5 Steps in Testing an Hypothesis

1. Verify that assumptions are met
(random sample, normal distri., level of measurement)
2. State research and null hypotheses and alpha
3. Select sampling distribution and test statistic to be used (Z or \dagger statistic)
(use Z if have population standard deviation, use t if have only sample SD)
4. Compute test statistic
5. Make a decision and interpret results

Comparing a group to a population using the t statistic. The formula for the t statistic when comparing a group to the population
$\mathrm{t}=\frac{\overline{\mathrm{Y}}-\mathrm{u}_{\mathrm{y}}}{\frac{\mathrm{S}_{y}}{\sqrt{N}}}$
Sample Statistic - Population Parameter
or
or $\quad \begin{aligned} & \text { Sample SD } \\ & \sqrt{N}\end{aligned}$
The t formula is identical to the Z formula except the \dagger formula uses the sample SD when calculating the standard error and the Z formula uses the population standard deviation when calculating the SE.

Computing the \dagger statistic.

The t statistic is used in two different cases.
It is calculated differently depending on which case you are interested in. These are:

1. Comparing a group to a whole population and
2. Comparing two groups to one another

Steps for interpreting the t statistic

Unfortunately, locating where the \dagger statistic falls on the normal curve is not as easy as when using the Z statistic (that is, unlike Z values, you cannot use the normal curve when using \dagger values).
Once the t statistic is calculated it is compared to the t value needed to reject the null hypothesis. The t value needed can be found on a \dagger distribution table (page 484-5 in textbook) and will vary depending on whether the researcher has chosen an alpha of .05, .01, etc.

How to use the t distribution table to determine significance
(1) Determine the degrees of freedom your sample provides (this is typically: $\mathrm{N}-1$) and then locate the DF on the t-distribution table (table is on page 484-5).
(2) Find on the table: the alpha which you selected at the start of the statistical analysis (an alpha of .05 and a two-tailed test are typically used by researchers)
(3) Find the intersecting point where the DF and the alpha cross. At the intersecting point you will find the t value needed to reject the null hypothesis.

t distribution table								
Toble 13.2	Values of the t Distribution							
	df	Level of Significonce for One-Toiled Test						
		. 10	. 05	. 025	. 01	. 005	. 0005	
		Level of Significance for Two-Tioild Test						
		. 20	. 10	. 05	. 02	. 01	. 001	
	1	3.078	6.314	12.706	31.821	63.057	636.019	
	2	1.886	2.920	4.303	6.965	9.925	31.598	
	3	1.638	2.353	3.182	4.541	5.841	12.941	
	4	1.533	2.132	2.776	3.747	4.804	8.610	
	5	1.470	2.015	2.571	3.365	4.032	0.859	
	10	1.372	1.812	2.228	2.764	3.169	4.587	
	15	1.341	1.753	2.131	2.602	2.947	4.073	
	20	1.325	1.725	2.086	2.528	2.845	3.850	
	25	1.316	1.708	2.060	2.485	2.787	3.725	
	30	1.310	1.697	2.042	2.457	2.750	3.646	
	40	1.303	1.084	2.021	2.423	2.704	3.551	
	60	1.296	1.671	2.000	2.390	2.860	3.400	
	120	1.289	1.058	1.980	2.358	2.617	3.373	
	∞	1.282	1.645	1.960	2.326	2.576	3.291	
	Source: Abridged from R. A. Fisher ond E. Yotes, Stotisticol Tobles for Biological, Agricultural and Medicol Research, Toble 111. Copyrighi O R. A. Fisher ond F. Yotes 1963. Reprinted by permission of Peorson Edvcotion Limited.							
								Chapter 13-6

(4) Compare the t value calculated from the data to the t value identified on the t distribution table. If the calculated t value is larger than the t value found in the table, then the null hypothesis can be rejected and the difference between the group and the population can be considered statistically significant (but not necessarily "substantively" significant).

The population mean is 500,000 and the sample mean is 550,000 with a sample standard deviation of 200,000 and sample size of 80 .

$$
\frac{550,000-500,000}{\frac{200,000}{\sqrt{80}}}=\frac{50,000}{22,371}=2.24
$$

Why are we calculating the t statistic instead of the Z statistic?

What alpha (level of confidence) would you like to use and why?

Finding the t statistic in the t distribution table
Our degrees of freedom for this example is $\mathrm{N}-1$ or 79 and our t statistic is 2.24 (the larger the \dagger statistic the more likely it will be significant).

On page 484-5 of your book we can find the t distribution table. It displays the degrees of
freedom for 60 and for 120 . Since ours is 79 it is
less than 120. Therefore, to be conservative we will use 60 DF .

We won't assume a one-tailed test since there is no existing knowledge to support the hypothesis that sturgeon fish in Lake Michigan lay more eggs than the average sturgeon fish.

t distribution table								
Table 13.2	Values of the t Distribution							
	df	Level of Significonce for One-Toiled Test						
		. 10	. 05	. 025	. 01	. 005	. 0005	
		Level of Significonce for Two-Toiled Test						
		. 20	. 10	. 05	. 02	. 01	. 001	
	1	3.078	0.314	12.706	31.821	63.657	${ }^{636.019}$	
	2	1.886	2.920	4.303	6.965	9.925	31.598	
		1.038	2.353	3.182	4.541	5.841	12.941	
	4	1.533	2.132	2.776	3.747	4.004	8.610	
	5	1.470	2.015	2.571	3.365	4.032	6.859	
	10	1.372	1.812	2.228	2.764	3.169	4.587	
	15	1.341	1.753	2.131	2.602	2.947	4.073	
	20	1.325	1.725	2.086	2.528	2.845	3.850	
	25	1.316	1.708	2.060	2.485	2.787	3.725	
	30	1.310	1.697	2.042	2.457	2.750	3.646	
	40	1.303	1.084	2.021	2.423	2.704	3.551	
	60	1.296	1.071	2.000	2.390	2.860	3.460	
	120	1.289	1.658	1.980	2.358	2.617	3.373	
		1.282	1.645	1.960	2.326	2.576	3.291	
	Source: Abridged from R. A. Fisher ond E. Yotes, Stotisticol Tobles for Biologicol, Agricultural and Medical Research, Toble 111. Copyrighi O R. A. Fisher and F. Yoles 1963. Reprinted by permission of Pearson Edvcotion Limited.							
								Chapter 13-12

Determining Statistical Significance

Since our \dagger statistic is 2.24 we can conclude statistical significance at the 05 level.

Would our findings be significant if we had chosen an alpha of .01?

Steps for comparing the sample statistics of two groups are the same as that for comparing a sample statistic to the population parameter with three exceptions:
(1) the formula for calculating the t statistic is different
(2) calculating the degrees of freedom is different, and
(3) must now determine whether the two groups have equal or unequal variances. (If the Levene's test is significant then their variances are unequal)

Comparing the Sample Statistics of Two Groups
(Presented above is a comparison of a group's sample statistic to a population parameter)

Example for comparing two groups:
Comparing the mean salary of new sociology professors (group 1) to the mean salary for new engineering professors (group 2). Previously we were comparing the group statistic (such as the mean salary of sociology professors) to the population parameter (such as the mean salary of the whole U.S. population).

\section*{Formula for calculating the t statistic for comparing two groups:
 (You will not be required to calculate this comparison because the formula for determining the Standard Error of the Differences Between the Means is complex. We will use the computer to do the comparison and then we will determine whether the null hypothesis can be rejected.)
 $t=\frac{$| Mean of |
| :---: |
| $1^{\text {st }} \text { Group }$ |}{| Mean of |
| :---: |
| $2^{\text {nd }} \text { Group }$ |} | Standard Error of the |
| :---: |
| Differences Between |
| the Means |}

Example: Comparing Two Sample Means (male and female job burnout) In SPSS:
1.Analyze
2.compare means
3.independent sample \dagger tes \dagger
4.move V101 (sex) to "group variable" box
5.click "define group"
6.in group 1 put "1" (female) and
in group 2 put "2" (male)
7.click continue
8.move "burnout", V102 (age), V100 (education), V114 (\# residents assigned) to "test variables" box and then click Okay

